
NAWCWDTM8415

A Tutorial on the use of GPIB and Spreadsheet
Software Macros for Data Acquisition in the

Evaluation of Photovoltaic Device Performance

by

Scott K. Johnson
for the

Chemistry and Materials Division

JULY 2003

Approved for public release; distribution is unlimited.

NAVAIR WEAPONS DIVISION
China Lake, CA 93555-6100

20040224 062

FOREWORD

This report was written by an Engineer and Sciences Development Program (ESDP)
employee during his tour of the Chemistry and Materials Division of the NAVAIR WD Research
Department.

This document presents a straightforward process for automating data acquisition using a
general purpose interface board (GPIB) and software with GPEB-compatible devices (e.g.,
multimeters, electronic loads, etc.), and which uses Microsoft Excel to capture the resultant data.
Using the equipment and processes described in this document one can centrally control several
devices automatically for the purpose of data acquisition and/or experiment control. This method
is a cheap alternative to expensive software and hardware, such as Lab VIEW and analog-to-
digital (A/D) data acquisition boards.

This document was reviewed for technical accuracy by Joe Roberts and Mike Seltzer.

R. A. NISSAN, Head
Chemistry and Materials Division

10 July 2003

NAWCWD TM 8415, published by the Technical Information Division, 15 copies.

NAWCWDTM8415

CONTENTS

Abstract 3

Introduction 3

Simple Example 3
GPIB Device Addresses 3
Setting up Excel for DAQ through GPIB 4
GPIB VB Interface 4
VBScript 4
Running Your Basic Program 6
Error Checking and the User Library 7

IV Curve 7
rV Curve Hardware 8
rV Curve Software 8
rV Curve: Conmients 11

Conclusion.. 11

Acknowledgments 12

References 12

Appendix 13
A-1. GPIB vs. A/D Boards 13
A-2. Timing 13
A-3. SIMPLE.bas 13
A-4. USERLIB.bas 14
A-5. IVCURVE.bas 17

Figures
1. rV Curve 7
2. rV Curve Generation Circuit 8
3. IV Curve Generation Circuit w/ HP Electronic Load 8

NAWCWD TM 8415

This page intentionally left blank.

NAWCWDTM8415

ABSTRACT

We present a lightweight and straightforward way to automate data acquisition (DAQ). This
approach uses a general purpose interface board (GPIB) and software with GPIB-compatible
devices (i.e., multimeters, electronic loads, etc) and Microsoft Excel to capture data. (Devices
with a GPIB hardware interface are equivalent to the HPEB and IEEE-488 hardware interfaces.)
One can centrally control several devices automatically for the purpose of data acquisition and/or
experiment control. This method is a cheap alternative to expensive software and hardware
(i.e., Lab VIEW™, A/D data acquisition boards, etc.), although certain considerations should be
taken into account when considering your hardware and software requirements (see Appendix A-
1). The following works well for simple experiments and we give an example that generates IV
(i.e., current-to-voltage) curve data for a solar cell.

INTRODUCTION

The following is a step-by-step guide to use GPIB-compatible devices, the GPIB interface
software, and Microsoft™^ Excel to gather data and control experiments automatically. We
assume the GPIB card and software has already been installed on the machine you are using.
(Our system has an x86 CPU, Microsoft Windows 98, and Microsoft Office 98.)

Two examples will be discussed: first, a simple example that collects voltage readings from
a multimeter, and then the IV Curve example.

SIMPLE EXAMPLE

For this example a single GPIB-compatible multimeter is attached to the GPIB board with a
GPIB cable.

GPIB DEVICE ADDRESSES

Most GPIB-compatible devices allow you to set the GPIB address for that device manually.
Usually this is done with three or four binary switches located near the GPIB port for that device.
These switches are the base 2 representation of the device address. For example, if your switch
was set to 0110, the address for that device would be 6.

NAWCWDTM8415

Setting Up Excel For DAQ Through GPIB

Next we open up Excel and the Visual Basic (VB) editor; go to Tools -> Macro -> VB
Editor. Once in the VB editor it is necessary to import the GPIB VB interface files for the GPIB
board. With our National Instruments GPDB board these files were located in the National
Instruments directory (C:\Program Files\National Instruments\GPIB\NI488\LangInt\VBasic\
Ver5). The two files you will need to import are VBIB32.bas and NIGLOBAL.bas. To do this, in
the VB editor go to File -> Import File... and select the files you want to import.

Then add a Module and Procedure for the Basic code you will be writing. To do this go to
Insert -> Module and then again to Insert -> Procedure.... You will be asked to name them. This
will add a blank subroutine to the Module you just created.

GPIB VB Interface

National Instruments provides a low level interface, or driver, for their GPIB boards. There
is also a C interface provided.

We use a small subset of the methods defined in VBIB32.bas. They are as follows:

ibdev Opens an unused device
ibclr Clears a specific device
ibin Checks for presents of device

ibloc Put device in local operation mode
ibonl Place device online or offline
ibrd Reads data from device

ibwrt Writes data to device

More information on the parameters and details of these methods will follow. The status
word ibsta will also be used frequently (see Appendix A-4). Each bit of the status word has
information about the current system status, see GPBB manual (Reference 2), page A-1 for more
information.

VB Script

Now we are ready to write a Basic script that takes voltage measurements from a
multimeter. (A Fluke 8840A multimeter is used for these examples.) Excel is used as both an
input and output mechanism for data collection. The Basic code reads the desired number of data
points from a specified cell on the spreadsheet and then writes those data points to a different
specified location. The following refers to the file SIMPLE.bas, which is in Appendix A-3. Here
is a brief step-by-step explanation of the Basic code contained in SIMPLE.bas.

NAWCWDTM8415

First, set the input/output locations for the Excel spreadsheet, see below.

Set DATA_POINTS_LOC = Range(Al)
Set DATA_COLLECT_LOC = Range("A2")

In the Excel spreadsheet, cell "Al" will be where the user enters how many data points they
want to be taken. Likewise, cell "A2" will be the starting point of the data output. (See VB
documentation, manuals, and references for more information on Graphical User Interfaces
(GUIs) and other VB features.)

Next we bring the multimeter online with the following code:

Call ibdev{0, 6, 0, 15, 1, 0, DEV_ID%)

The call to ibdev, which is defined in the VBIB32.bas file, takes several input parameters
and one output parameter. The first parameter is the GPIB board address, 0, in this case.
(Reference 2, the GPIB User Manual, has more information on this topic.) The next two
arguments are the primary and secondary addresses for the GPIB-compatible device that you are
trying to bring online, in this case, the multimeter. The Fluke multimeter has a GPIB address that
has been set to 6. The fourth argument is the device timeout in seconds, which we have set to 15.
Different devices will have different timing issues and possibly many different solutions; this
argument may help in some of these situations. (The GPIB manual also has many suggests for
resolving timing problems.) The next two arguments are binary flags for different operating
modes. The first is the END message toggle and the second is the end of string (EOS) toggle. The
GPIB manual also contains more detail about these modes. The above configuration seemed to
work fine for our purposes. The last argument is the output argument, passed by reference (see
VBIB32.bas), which assigns an integer to DEV_ID, allowing for future writes and reads to
specific devices. Reminder: VB allows the following characters to specify specific types in their
variable identifiers: % - Integer, $ - String, # - Double, & - Long, and others.

Once the multimeter is online it can accept read and write commands. The ibwrt call
writes the command string, "Fl SI TO" to the multimeter:

Call ibwrt(DEV_ID%, "Fl SI TO")

This command does three things: Fl sets the multimeter to DC Volt mode, SI sets the
Reading Rate to medium, and TO sets Continuous Trigger mode. These commands are unique to
the Fluke multimeter, although an HP multimeter we used seemed to have the same comumand
set. Your instruction manual contains a complete command set for your device.

Next we gather the input from our specified input location on the Excel sheet.

DATA POINTS% = DATA POINTS LOC.value

NAWCWD TM 8415

Now we are ready to start reading data from the multimeter. [The code segment below has
been numbered for easy reference.']

1 Readbuf$ = Space$(20)
2 Set eel = DATA_COLLECT_LOC
3 1% = 1
4 While 1% < DATA_POINTS% + 1
5 Call ibrd{DEV_ID%, Readbuf$)
6 rd$ = Left(Readbuf$, (ibcnt% - 2))
7 cel(I%, 1).value = CDbl(rd$)
8 1% = 1% + 1
9 Wend

Lines 1 through 3 initialize some variables before starting to loop. Line 5 makes the
interface call to ibrd, which takes two arguments: the first is the device identifier of the device
from which you wish to read, and second is the buffer that will hold the data being read. Line 6
takes the first ibcnt - 2 characters in the buffer Readbuf. The variable ibcnt is defined with
the GPIB VB Interface, and is the size of the buffer that you have just read. In certain devices, the
last character in these strings is an unreadable marker; you will need to get rid of it if you want to
cast that string into a double or integer type. This unreadable marker can differ from device to
device and should be kept in mind if you are getting formatting errors after you have read data
from a device. Lines 7 and 8 output the data to the Excel spreadsheet and increment the loop
variable.

Now that we are done taking data we can return the device to local mode operation and take
the device offline.

Call ibloc(DEV_ID)
Call ibonl(DEV_ID, 0)

The GPIB software has good examples for both the C and VB interfaces, for many different
applications. The GPIB User Manual (Reference 2) is also a good source of documentation.

Running Your Basic Program

To run the Basic code go to back to the Excel spreadsheet and go to Tools -> Macro ->
Macros.... A window will pop up; the name you gave your procedure will be listed in this
window. Highlight the procedure you want to run and then press the Run button.

NAWCWD TM 8415

Error Checking and the User Library

It is highly recommended to do some error checking when making calls that interface the
GPIB board. We wrote some procedures that include error checking, which can be found in
Appendix A-4. The methods are as follows, and will be covered in more detail as we encounter
them:

Open_Dev Opens an unused device
Close_Dev Closes a device
Write_Dev Writes data to device

Read Dev Reads data from device

IV CURVE

One way to evaluate the performance of a solar cell is with an IV Curve, or current-to-
voltage curve. These graphs plot the voltage versus the current as the load, or resistance, changes.
This data can be useful in a couple of different ways. It gives both the short circuit current, Isc,
and the open circuit voltage, Voc- The Isc is when resistance is as close to nothing as possible, and
similarly the Voc is when the resistance is very great. The product of these values is the theoretical
power maximum. The IV Curve can also be used to calculate the fill factor, FF, defined below,

where P^is the theoretical power maximum, and Pmax is the maximum power of the device.

p

po
■* max

(1)

There are other measures as well, such as spectral resposivity and quantum efficiency, which
can be found in the solar cell literature but will not be discussed here (Reference 4). Figure 1 is
an example of an IV Curve of a commercial solar cell.

aoss
IVCurv*

■ ■ <<ur^M^ .

0.05

ao45

.»• ♦ ♦ ♦ +♦ + ♦+ ♦ 'H> .f

0.04 • *

ao3s 4-

X
0.03 \

ao2s }

0.02

\

■

aois ■

0.01

' ■

\ ■

HGUREl. IV Curve.

NAWCWDTM8415

IV CURVE HARDWARE

To generate an IV Curve one must have the following circuit (Figure 2).

FIGURE 2. rv Curve Generation Circuit. TD refers to Test Device.

The TD is in parallel with a voltmeter as well as an ammeter and an adjustable load, which
are in series.

One way to achieve the adjustable load is with a programmable electronic load. This is nice
for automation, too. We used an HP 6050A Electronic Load (Reference 3). Figure 3 shows the
setup with the electronic load.

>

Electronic Load

+S

-S 6
Q

>

FIGURE 3. IV Curve Generation Circuit w/ HP Electronic Load.

IV CURVE SOFTWARE

There are many similarities between the IV Curve example and the 'simple' example, we
covered previously. The IV Curve example follows the same general algorithm, setup I/O, open
and initialize devices, gather input, collect data, and close devices, except that there are more
devices, parameters, and variables in this example. The routines in the USER_LIB.bas are used
in the IV Curve example and variables are declared explicitly for clarity (see Appendix A-4 and
A-5).

NAWCWDTM8415

Once again, the VO locations are defined, and now we have two input parameters: the
number of data points you want to collect, DATA_POINTS; and the maximum resistance that you
want to use when plotting the IV Curve, MAX_RESISTANCE. The reason for the maximum
resistance parameter will be discussed in greater detail later. Here the inputs are found in column
"B"; this allows you to label the Excel spreadsheet for easy reference of input parameters.

Set DATA_POINTS_LOC = Range ("Bl")
Set MAX_RESISTANCE_LOC = Range("B2")
Set DATA_COLLECT_LOC = Range("Cl")

Next the devices are brought online and initialized. Now that there are three remote devices
being used, it is necessary to have three device identifiers. We are now using the call to
Open_Dev, which takes all the same parameters as the GPIB Interface call, minus the output
parameter, which is returned in this case. The only parameter that changes in each call is the
second one, which is the GPIB address. This will change depending on the addresses of your
devices.

MULTI_METER_1_DEV_ID = Open_Dev(0, 1, 0, 15, 1, 0)
MULTI_METER_2_DEV_ID = Open_Dev(0, 6, 0, 15, 1, 0)
ELEC_LOAD_DEV_ID = Open_Dev(0, 5,0,15,1,0)

Call Write_Dev(MULTI_METER_l_DEV_ID, "Fl SI TO")
Call Write_Dev{MULTI_METER_2_DEV_ID, F5 SI TO")
Call Write_Dev(ELEC_LOAD_DEV_ID, "MODE:RES")
Call Write_Dev(ELEC_LOAD_DEV_ID, "INPUT ON")

After the devices are open, each device is set to the state desired for data collection. There
are two Fluke multimeters in use. MULTI_METER_1 will be the voltmeter, and MULTI_METER_2,

the ammeter. Recall, for the Fluke multimeters "Fl" is the command to set the multimeter to
measure DC Volts, and "F5", DC Amperes. For the HP Electronic Load two commands are sent,
one sets the device mode to Constant Resistance and the next turns "on" the input.

Next, the input parameters are retrieved from the Excel spreadsheet, along with the
calculation of the resistance increment interval, RESISTANCE_INC, and some other
initialization. Here the resistance increment is calculated by dividing the maximum resistance by
the data points you want to sample. This gives a consistent increase in resistance for each data
point. By specifying the MAX_RESISTANCE it allows you to tune what range of resistances you
want to collect. For this particular electronic load module, the maximum specified resistance is
20kQ, which is used to calculate the Voc- For your solar cell, however, you may only need 200S2
to approach the Voc- For example, let DATA_POINTS equal 10, and MAX_RES I STANCE equal
20kS;2. Then RESISTANCE_INC will be 2kQ. If your solar cell approaches the Vpc around 200^12
no IV Curve will be recorded because all of the data is taken at the Voc- If the MAX_RES I STANCE
is 200^, then the RESISTANCE_INC will be 20Q, allowing for points to be recorded from 1^ to
200^2 at 20Q. intervals, which will generate meaningful data. The starting resistance is also
initialized to IQ.

NAWCWDTM8415

DATA_POINTS = DATA_POINTS_LOC.value
MAX_RESISTANCE = MAX_RESISTANCE_LOC.value
RESISTANCE_INC = 14AX_RE SI STANCE / DATA_POINTS
RESISTANCE = 1#
Set eel = DATA_COLLECT_LOC

Then the first data point is collected, the Isc, or short circuit current. The resistance is set to
the lowest possible resistance the HP Electronic Load can handle, 0.033Q; this is done by
adjusting the resistance range and then changing the resistance. (In VB, the ampersand is string
concatenation, and does the type conversion automatically.)

Call Write_Dev(ELEC_LOAD_DEV_ID, "RES:RANG " & 0.033)
Call Write_Dev(ELEC_LOAD_DEV_ID, "RES " & 0.033)

Sleep 500
AMPS = Read_Dev(MULTI_METER_2_DEV_ID, 2)

cel{l, 1).value = 0
cel(l, 2).value = AMPS

After the resistance has been set, the circuit is allowed to settle and then the amperage is
read from the ammeter. The data are then output to the spreadsheet. Now a data collection loop
can commence. The code segment below has been numbered for reference.

1 1 = 2
2 While I < DATA_POINTS
3 Call Write_Dev(ELEC_LOAD_DEV_ID, "RESrRANG " & RESISTANCE)
4 Call Write_Dev(ELEC_LOAD_DEV_ID, "RES " & RESISTANCE)
5 VOLTS = Read_Dev(MULTI_METER_l_DEV_ID, 2)

6 If VOLTS < 2 Then
7 AMPS = Read_Dev(MULTI_METER_2_DEV_ID, 2)
8 celd, 1) .value = VOLTS
9 celd, 2) .value = AMPS
10 End If
11 1=1+1
12 RESISTANCE = RESISTANCE + RESISTANCE_INC
13 Wend

The basic procedure is as follows:

1. Set the resistance [lines: 3, 4]

2. Read from voltmeter [line: 5J

3. Check for erroneous data [line: 6]

10

NAWCWD TM 8415

4. Read amps and output [lines: 7, 8, 9]

5. Update loop counter, I, and RESISTANCE [lines: 11, 12]

Finally, the Vgc is calculated, the last data point output, and the devices are closed.

Call Write_Dev{ELEC_LOAD DEV_ID, "RES:RANG " & 20000)
Call Write_Dev{ELEC_LOAD_DEV_ID, "RES " & 20000)
Sleep 500
VOLTS = Read_Dev{MULTI_METER_l_DEV_ID, 2)
eel(I, 1).value = VOLTS
cel(I, 2).value = 0

Call Close_Dev{MULTI_METER_1_DEV_ID)
Call Close_Dev{MULTI_METER_2_DEV_ID)
Call Close_Dev(ELEC_LOAD_DEV_ID)

From here the raw data can be manipulated and displayed with Excel.

IV CURVE: COMMENTS

The example just given could have been done with just one multimeter. In that case, the
program would switch the multimeter between reading volts and amperes. This would be no
problem, although it would be slower. There are many other ways one might set up this
experiment, it just depends on the availability of hardware and what you need.

Other calculations for the example above, for example/i/Z/acror, may be calculated from the
raw data collected using Excel. This can also be controlled using a VB script or can be done
manually after you collect the data. How much computation to automate, either by writing
procedures in VB, or using calls to Excel is totally up to the user and can be customized
accordingly.

CONCLUSION

A cheap alternative to expensive software and hardware (i.e., LabVTEW and A/D data
acquisition boards) works well for simple experiments. This approach uses a GPIB board and
software, with GPEB-compatible devices (e.g., multimeters, electronic loads, etc.) and Microsoft
Excel to capture data.

11

NAWCWD TM 8415

ACKNOWLEDGMENTS

I would like to acknowledge the assistance of Sam Edwards, NAVAIR WD, Public Works,
who explained the basics of the IV Curve data collection setup and donated some of the hardware
used for the IV Curve generation. Thanks also to the creative folks behind the Google search
engine for helping me find good VB documentation and help.

REFERENCES

1. Fluke, 8840A Multimeter, Instruction Manual, May 1984.

2. National Instruments, GPIB User Manual for Win32, June 1998.

3. Hewlett Packard, Electronic Load Mainframes, HP Models 6050A, Operating Manual, May
1993.

4. Field, H., UV-VIS-IR Spectral Responsivity Measurement System for Solar Cells, presented
at the National Center for Photovoltaics Program Review Meeting, September 8-11,1998.

12

NAWCWD TM 8415

APPENDIX

A-1. GPIB vs. A/D Boards

There is a good comparison between internal (e.g., PCI, ISA, etc.) A/D boards vs. using
external instruments with GPIB, or RS232. The comparison is provided by Keithley^^ and can
be found at the following web address:

• http://www.keithely.cl/inisc/across/Selector_Guide.pdf

A-2. Timing

There are many ways to achieve timing in VB, all with varying degrees of accuracy and
complexity. See VB literature for more information. One simple way is to do the following.
First, define a GetTickCount method:

Public Declare Function GetTickCount Lib "kernel32.dll" () As
Long

Depending on your application you can use GetTickCount however you like, for example
recall our first example, SIMPLE.bas. If you wanted to record, approximately, when each
voltage measurement was taken starting from time = 0, you could do the following. Initialize a
starting point,

TIME_0& = GetTickCount

Then, wherever you wanted a current time, as a Double, use

TIME_NOW# = ((GetTickCount - TIME_0&) / 1000#)

A-3. SIMPLE.bas

Public Sub Main ()
' Set USER defined I/O locations

Set DATA_POINTS_LOC = Range("Al")
Set DATA_COLLECT_LOC = Range("A2")

Open Device
Call ibdev{0, 6, 0, 15, 1, 0, DEV_ID\%)

' Write to device its initial settings
Call ibwrt(DEV_ID\%, "Fl SI TO")

' Gather input parameters

13

NAWCWDTM8415

DATA_POINTS\% = DATA_POINTS_LOC.value
' Perform data collection

Readbuf\$ = Space\$(20)
Set eel = DATA_COLLECT_LOC

1 = 1
While I < DATA_POINTS\% + 1

' take measurements
Call ibrd(DEV_ID\%, Readbuf\$)
rd\$ = Left{Readbuf\$, (ibcnt\% - 2))

' output data point
celd, 1) .value = CDbl(rd\$)

' update loop variable
I\% = I\% + 1

Wend
' Return device to local mode and take offline

Call ibloc(DEV_ID\%)
Call ibonl(DEV_ID\%, 0)

End Sub

A-4. USER LIB.bas

(In the source code below, VB statements have been spHt over several lines for readability only;
errors will occur if they remain in this form.)

Open_Dev:

Opens and initializes remote component(i.e. multimeter, etc.)

Input: board_index _ GPIB board address
prim_add _ primary GPIB address
sec_add _ secondary GPIB address
time_out _ time device waits before timing out,

in seconds
end_mess_flag _ end message flag, usually true
eos_flag _ end of string mode flag, usually false

Output: dev_id _ device identifier

Private Function Open_Dev{ByVal board_index As Integer,
ByVal prim_add As Integer,
ByVal sec_add As Integer,
ByVal time_out As Integer,

14

NAWCWD TM 8415

ByVal end_mess_flag As Integer,
ByVal eos_flag As Integer) As Integer

Dim dev_id As Integer
Dim ln_flag As Integer

Call ibdev{board_index,
prim_add,
sec_add,
time_out,
end_mess_flag,
eos_flag,
dev_id)

If (dev_id < 0) Then
ERROR_MESSAGE {"Can't initialize device, gpib addr = " & prim_add)

End If

Call ibclr(dev_id)

' checking for presence of device
Call ibln(dev_id, prim_add, sec_add, ln_flag)
If ln_flag = 0 Then

ERROR_MESSAGE ("Device not working, check power, gpib addr = " &
prim_add)

End If

Open_Dev = dev_id

End Function

Close_Dev:

Returns device to local control and takes it offline

Input: dev_id - device identifier

Private Sub Close_Dev(ByVal dev_id As Integer)

Call ibclr(dev_id)
Call ibloc(dev_id)
Call ibonl(dev_id, 0)

15

NAWCWD TM 8415

End Sub

?)?»)79»)>9>))?)55595»?J»9)995?5555599"''»"""»""»"""9'

Write_Dev:

Writes command string to remote device

Input: dev_id - device identifier
buf - command string buffer

??)»??57?)))?9)9?)?7)»))9J»9)?9)9J9???7?)?JJ»9?J5»J?)5»59955))

Private Sub Write_Dev(ByVal dev_id As Integer,ByVal buf As String)
Call ibwrt(dev_id, buf)
If (ibsta And EERR) Then

ERROR_MESSAGE ("Error = " &
iberr &
"Couldn't trigger device, dev_id = " & dev_id)

End If

End Sub

Read_Dev:

Read device output buffer

Input: dev_id - device identifier
offset - buffer offset

Output: value - the value of the buffer
in decimal form as a double

5?9»»95J>95J99J5J9)5»9JJ59JJJ199S»9»»»559»9995999»999599J99599J9

Private Function Read_Dev{ByVal dev_id As Integer,
ByVal offset As Integer) As Double

Readbuf = Space(20)
Call ibrd(dev_id, Readbuf)
If (ibsta And EERR) Then

ERROR_MESSAGE("Error = " &
iberr &
"Couldn't read from device,dev_id = " & dev_id)

End If

16

NAWCWDTM8415

rd = Left(Readbuf, (ibcnt - offset))
Read_Dev = CDbl(rd)

End Function

' Error message routine, calls VB's MsgBox
Private Sub ERROR_MESSAGE{ByVal err As String)

MsgBox err
End

End Sub

A-5. IV CURVE, bas

Public Sub Main ()

' Declare Device id's
Dim MULTI_METER_1_DEV_ID As Integer
Dim MULTI_METER_2_DEV_ID As Integer
Dim ELEC_LOAD_DEV_ID As Integer

' Declare USER I/O locations as Range
Dim DATA_POINTS_LOC As Range
Dim DATA_COLLECT_LOC As Range
Dim MAX_RESISTANCE_LOC As Range

' Declare other USER variables
Dim I As Integer
Dim eel As Range
Dim DATA_POINTS As Integer
Dim MAX_RESISTANCE As Double
Dim RESISTANCE As Double
Dim RESISTANCE_INC As Double
Dim VOLTS As Double
Dim AMPS As Double

' Set USER defined I/O locations
Set DATA_POINTS_LOC = Range("Bl")
Set MAX_RESISTANCE_LOC = Range("B2")
Set DATA_COLLECT_LOC = Range("Cl")

17

NAWCWD TM 8415

Open Device(s)
MULTI_METER_1_DEV_ID := Open_Dev(0, 1, 0, 15, 1, 0)
MULTI_METER_2_DEV_ID = Open_Dev(0, 6, 0, 15, 1, 0)
ELEC_LOAD_DEV_ID = Open_Dev(0, 5, 0, 15, 1, 0)

write initial device modes
Call Write_Dev(MULTI_METER_l_DEV_ID, "Fl SI TO")
Call Write_Dev(MULTI_METER_2_DEV_ID, "F5 SI TO")
Call Write_Dev(ELEC_LOAD_DEV_ID, "MODErRES")
Call Write_Dev{ELEC_LOAD_DEV_ID, "INPUT ON")

Gather input parameters
DATA_POINTS = DATA_POINTS_LOC.value
MAX_RESISTANCE = MAX_RESISTANCE_LOC.value

Perform needed pre_run calculations
' Calculate resistance increment
RESISTANCE_INC = MAX_RESISTANCE / DATA_POINTS

' Initialize resistance setting (1 Ohm)
RESISTANCE = 1#

Perform data collection
Set eel = DATA_COLLECT_LOC

' calculate Isc and output first data point
Call Write_Dev(ELEC_LOAD_DEV_ID, "RES:RANG " & 0.033)
Call Write_Dev(ELEC_LOAD_DEV_ID, "RES " & 0.033)

Sleep 500
AMPS = Read_Dev(MULTI_METER_2_DEV_ID, 2)
cel{l, 1).value = 0
cel(l, 2).value = AMPS

1 = 2
While I < DATA_POINTS

' set load
Call Write_Dev(ELEC_LOAD_DEV_ID,"RES:RANG "& RESISTANCE)
Call Write_Dev(ELEC_LOAD_DEV_ID, "RES " & RESISTANCE)

' take voltage measurement
VOLTS = Read_Dev(MULTI_METER_l_DEV_ID, 2)

' through out erroneous voltage measurements

18

NAWCWDTM8415

If VOLTS < 2 Then
take amp meas.

AMPS = Read_Dev{MULTI_METER_2_DEV_ID, 2)
' output data point
eel(I, 1).value = VOLTS
eel(I, 2).value = AMPS

End If

' update loop variable and resistance increment
1 = 1 + 1
RESISTANCE = RESISTANCE + RESISTANCE_INC

Wend

' calculate Voc(last data point), and output
Call Write_Dev(ELEC_LOAD_DEV_ID, "RES:RANG " & 20000)
Call Write_Dev(ELEC_LOAD_DEV_ID, "RES " & 20000)
Sleep 500
VOLTS = Read_Dev(MULTI_METER_l_DEV_ID, 2)
eel(I, 1).value = VOLTS
eel(I, 2).value = 0

' Close devices
Call Close_Dev{MULTI_METER_I_DEV_ID)
Call Close_Dev{MULTI_METER_2_DEV_ID)
Call Close_Dev{ELEC_LOAD_DEV_ID)

End Sub

19

